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Abstract 

This paper begins to explore an analogy between the usual competitive 
learning metaphor presented in the genetic algorithm (GA) literature 
and the cooperative learning metaphor discussed by Clearwater, Huber- 
man, and Hogg. In a blackboard cooperative learning paradigm, agents 
share partial results with one another through a common blackboard. By 
occasionally accessing the blackboard for a partial solution, an agent 
can dramatically increase its speed in finding the overall solution to a 
problem. The study of Clearwater et al. shows that the resulting speed 
distribution among the agents is lognormal. The GA can also be de- 
scribed in terms of an analogous cooperative learning paradigm. Unlike 
the blackboard learner, the GA shares information by copying and re- 
combining the solutions of the agents. This method of communication 
slows down the propagation of useful information to agents. The slower 
propagation of information is necessary because the GA cannot directly 
evaluate parts of a solution or "partial solutions." The extent to which 
the GA is cooperative also depends on the choice of heuristics used to 
modify the canonical GA. The few test cases presented in this paper 
suggest that the GA may at times yield an approximately lognormal dis- 
tribution or a mixture of lognormal distributions. While the results look 
promising, more analysis of the algorithm's overall process is required. 
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1   INTRODUCTION 

Cooperation is generally recognized as an important underlying principle of our social 
systems. A natural extension of this principle is the application of cooperation in computa- 
tional systems. Along with the increasing interest in developing parallel architectures, 
there has also been a corresponding increase in studying distributed problem solving (e.g., 
Bond and Gasser, 1988). Many artificial intelligence systems illustrate the benefits of co- 
operation. For example, the HEARSAY-II speech understanding system is one of the more 
noted systems (Fennell and Lesser, 1975). 

The recent work by Clearwater et al. (Clearwater, Huberman, and Hogg, 1991; Huberman, 
1990; Huberman and Hogg, 1987) examines the quantitative value of cooperative learning 
from both a theoretical and an empirical point of view. One of their papers emphasizes the 
importance and generality of their theoretical results (Clearwater, Huberman, and Hogg, 
1991, pp. 2): 

It showed that cooperative searches, when sufficiently large, can display 
universal characteristics, independent of the detailed nature of either the 
individual processes or the particular problem being tackled. This uni- 
versality manifests itself in two separate ways. First, the existence of a 
sharp transition from exponential to polynomial time required to find the 
solution as heuristic effectiveness improved [Huberman and Hogg, 
1987]. Second, the appearance of a lognormal distribution in [an] indi- 
vidual agent's problem solving effectiveness. The enhanced tail of this 
distribution guarantees the existence of some agents with superior per- 
formance. This can bring about a combinatorial implosion [Kornfeld, 
1982] with superlinear speed-up in the time to find the answer with re- 
spect to the number of processes. 

The classical framework for analyzing generational genetic algorithm (GA) (Holland, 
1975; De Jong, 1975) tends to emphasize the role of competition in the "survival of the fit- 
test." Competing structures within the population explore various parts of the search space 
in parallel. The important ability of the GA to evaluate several schemata at once within the 
GAs population without "explicit bookkeeping" is called implicit parallelism (Holland, 
1975; Goldberg, 1989). During each generation, the algorithm selects parts of the search 
space to explore: first, by applying the selection and reproduction operators to generate 
clones of relatively more fit structures, then by applying the crossover operators to gener- 
ate new structures from substructures of the clones (i.e., possible building blocks), and fi- 
nally, by mutating these new structures by a small amount to ensure some variety in the 
population. For function optimization problems, the competition over the generations 
evolves a population of relatively homogeneous structures. These structures provide an 
optimal and/or a near-optimal solution to the problem. 

What if, instead of emphasizing the notion of competition, we describe the GA in a com- 
plementary way? Suppose we regard the GA population as a set of cooperating agents,  
where each agent has a trial solution to the problem. The selection function, based on en- -^_" fQr 
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change with each generation, depending on the information received from other agents 
and the amount of individual search each agent performs. In the standard GA, which uses 
haploid structures, each agent stores only one solution at a time. 

If the generational GA does fall under the umbrella of the general framework called coop- 
erative learning, especially when applied to problem solving and function optimization, 
then this additional perspective should enhance our understanding of the algorithm. Clear- 
ly, the GA is a cooperative learner in that it shares information among population mem- 
bers during reproduction and crossover, but perhaps a more important question is: "To 
what extent is the genetic algorithm a cooperative learner?" 

The discussion above suggests a parallel between the competitive learning framework 
usually adopted when analyzing GAs and the cooperative learning framework discussed 
by Clearwater et al. The GA can be viewed from two complementary perspectives: com- 
petitive learning and cooperative learning. This paper further explores the relationship be- 
tween the two perspectives within the standard GA. The paper then provides a brief 
analysis of the GA in terms of cooperative learning. A few empirical examples of GA per- 
formance illustrate the degree to which the GA is a cooperative learner. The empirical re- 
sults indicates that although the GA is essentially cooperative, there are some significant 
differences between the cooperative learner described by Clearwater et al. and the GA. 
The Conclusions section addresses possible explanations for these differences. 

2    OVERVIEW OF THE PROBLEM 

This section first explains the assumptions behind blackboard cooperative learning and 
then compares these assumptions to the GA. Next, the section discusses the blackboard 
model of cooperative learning as a multiplicative process. A similar analysis is then ap- 
plied to the Schema Theorem in GAs. This analysis shows that the GA is multiplicative 
with respect to the growth and decay of a schema; however, a schema may initially alter- 
nate in its growth and decay from one generation to the next, depending on the context of 
the current set of solutions in the population. 

2.1 BLACKBOARD COOPERATIVE LEARNING 

In the framework of cooperation in distributed problem solving, the blackboard learning 
system described by Clearwater et al. represents a simple form of cooperation called re- 
sults-sharing (Smith and Davis, 1988). Smith and Davis describe results sharing among 
knowledge sources (KSs) as follows (Smith and Davis, 1988, pp. 66): "Results-sharing is 
a form of cooperation in which individual nodes assist each other by sharing partial re- 
sults, based on somewhat different perspectives on the overall problem." In the blackboard 
learner, a KS is an agent that either searches independently for a solution, or posts and/or 
reads hints from a shared blackboard. If on the average, the hints are beneficial, then the 
synergetic effect of the interactions among the agents can have a substantial effect in re- 
ducing the search time of an agent. In effect, an agent enhances its performance by treating 
other agents as explicit (but fallible) teachers. If the search heuristics of the agents are ef- 
fective, i.e., there is a high rate of posting good hints on the blackboard, then the reduction 
in an agent's search time can be dramatic. 



A hint does not have to be part of the final solution; a hint may only be correct in a limited 
context. In fact, if an agent were to occasionally receive a bad or misleading hint, the over- 
all performance of the system would be unaffected so long as, on the average, hints are 
good. The value of a hint is not fixed. The same hint may be valued differently by different 
agents, depending on the processing context of the particular agent. Also, as the search 
progresses, the value of a partial solution tends to lessen. As more partial solutions are 
placed on the blackboard, an agent is more likely to have already tested a posted partial so- 
lution in a number of contexts. The rate of placing hints on the blackboard is determined 
by an agent's ability to generate partial solutions (and in realistic systems, the willingness 
of the agent to communicate them). In the blackboard cooperative learning framework, the 
agent is allowed to reconsider hints; however, an agent does not reexamine a possible 
overall solution more than once. 

2.2 BLACKBOARD COOPERATIVE LEARNING AND THE GA 

If we adopt the cooperative learning framework in thinking about the GA, then a genera- 
tion is one of many repeated encounters among agents sharing solutions, and the popula- 
tion structures are the trial solutions of the agents that are formed by accepting, to a greater 
or lesser degree, the hints of other agents. Substructures within the structures, or schemata, 
represent partial solutions. The overall effect of applying the selection, reproduction and 
crossover operators to the population is analogous to selectively trading hints on a finite 
capacity blackboard. During each generation, an agent can respond in four different ways. 
An agent can: (1) maintain the same solution from the last generation, (2) adopt the solu- 
tion of another agent, (3) modify its solution from the last generation by accepting hints 
from another agent, and (4) adopt another agent's solution and then modify that solution 
with hints from yet another agent. The initial diversity in the population aids individuals in 
their search; the mutation operator provides each agent with individual learning capabili- 
ty.2 Each agent performs independent search to the extent that the pseudo-random number 
generator is uncorrelated. 

When we examine the performance of both types of learners, there appears to be a number 
of similarities. The analysis provided by Clearwater et al. considers the trade-off faced by 
each agent between cooperative learning and the exploration of the search space. In the 
GA literature, this trade-off is usually expressed as exploitation versus exploration (Hol- 
land, 1975). Regardless of the terminology, placing extreme emphasis on cooperation (or 

1. Depending on the quality of the heuristics, cooperation has a beneficial effect even 
when there are only a few agents involved. For example, a recent study of Clouse and Ut- 
goff (Clouse and Utgoff, 1992) illustrates how a human expert's knowledge (i.e., a teacher 
having a "perfect heuristic") can accelerate the learning of a reinforcement learner. In the 
study, the expert (the first agent) periodically supplies actions to be taken (partial solu- 
tions) to the reinforcement learner (the second agent). Even with infrequently supplied ad- 
ditional expert knowledge, the reinforcement learner can learn in up to two orders of 
magnitude fewer trials. 
2. Clearly, simple mutation represents the least directed of possible search strategies that 
an agent can pursue as an individual. The advantages of using hybrid approaches that 
combine a GA with gradient search strategies is currently a topic of ongoing debate (e.g., 
Ackley, 1991). 



similarly exploitation) to the exclusion of exploration, or vice versa, is suboptimal. Let us 
consider the two cases. First, let us suppose that all of the agents dedicate their time to 
only seeking the partial solutions of other agents so that there is very little investment in 
individual search. This means that the agents can only form new hypotheses based on the 
combination of partial solutions already present in the population. If the number of agents 
is small, and if there is too much sharing of information among too few agents, it may not 
be possible for the agents to find a solution. More information can be exchanged by in- 
creasing the size of the population and/or by having agents perform more individual 
search. The same problem arises in the GA when using a high crossover rate with a harsh 
selection policy, a small population size, and a small mutation rate. These parameter set- 
tings emphasize exploitation in the GA's search while limiting the amount of exploration. 
In the worst case, the GA would not find the solution due to premature convergence. As 
the other extreme case, let us suppose that all of the agents in the blackboard cooperative 
learner work separately, without sharing information. In this case, the time required for an 
agent to find a solution may be very long, depending on the talent of the individual agent. 
The same problem occurs in the GA when using a large mutation rate, a weak selection 
policy, and no crossover. In the worst case, the GA would not converge. 

Despite these overall similarities in behavior, there are some significant operational differ- 
ences between the models as outlined below: 

• In the blackboard model, each agent knows the correctness of a partial solution 
(though it may not be part of the optimal solution), whereas in the GA, the agent only 
knows the value of an overall solution, not partial solutions. 

• The agent of the blackboard model knows when it has discovered an optimal solution 
so that the agent can halt its processing. In the GA, the goodness of a solution is rela- 
tive to other solutions in the population. It is possible for an agent to destroy its current 
optimal solution to investigate possibly better, but actually worse, solutions. 

• Hints remain on the blackboard for easy access, so that in the blackboard model partial 
solutions are not destroyed. In the GA, memory is local to agents, and the amount of 
that local memory is limited by the population size. A partial solution can be lost due 
to selection (when there is epistasis) or to mutation. 

• In the blackboard model, all of the agents have access to all of the hints. (However, the 
search for new information may in reality cost time.) In the GA, the copying of solu- 
tions is usually performed among subsets of agents as a result of the selection process. 
The sharing of partial solutions is performed among pairs of agents during crossover. 

2.3 MULTIPLICATIVE PROCESSES AND THE LOGNORMAL DISTRIBUTION 

The lognormal distribution has been used to describe processes in many fields, including: 
industry, economics, biology, ecology, and geology (Aitchison and Brown, 1976; Shimizu, 
1988). For example, Mosimann and Campbell (Mosimann and Campbell, 1988) describe 
an active tissue growth model in which the tissue produced at prior time steps actively par- 
ticipates in the production of tissue at the current time step. Thus, if Wk is the amount of 
tissue at time k, then the growth ratio, Xk +, = Wk+i/Wk. Given W0 is the initial amount 
of tissue, the tissue at time k is 



Wk= W0Y\Xi,k= 1, ...,n. (1) 
1 = 1 

Unlike the inert tissue model, which is additive, the active growth model allows for both 
the growth and the decay of tissue at different times. Values of Xt greater than one indicate 
growth; values of Xi between 0 and 1 indicate decay. 

The asymptotic distribution for a product of random variables is generally lognormal. The 
name of the lognormal distribution is derived from the fact that a product can be trans- 
formed into a sum by taking the natural log of the terms. Because the sum of the log terms 
asymptotically converges to a Gaussian (Normal) distribution (as we know from the Cen- 
tral Limit Theorem), the limiting probability distribution of a product of random variables 
is usually described using the lognormal distribution. Given x> 0 in Eq. (1), the simple 
lognormal distribution is a function of a scaling parameter, \i, and a shape parameter, a. 
For -oo < p, < oo, and a > 0, (Hahn and Shapiro, 1967, pp. 99) the two parameter lognor- 
mal is 

fix)  =  -j=exp 
<5xJ2% 

1 2" {ln{x)-\l) 
2a .2 

(2) 

The three parameter version includes a threshold parameter, £, which indicates the mini- 
mum value of x. Given -oo<e<oo,x>e, -oo < y < oo, and r| >0 (Hahn and Shapiro, 
1967, pp. 199), and 

T) = 1/G and Y = -\i/a 

from the two parameter lognormal, the density of the three parameter lognormal is 
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The three parameter lognormal can be transformed to the Gaussian distribution as follows: 

z = Y + r|/n(x-e) • (4) 

If e = 0, then the three parameter version of Eqn. (3) reduces to the two parameter ver- 
sion of Eq. (2). 

2.4 MULTIPLICATIVE PROCESS IN COOPERATIVE LEARNING 

The analysis of Clearwater et al. shows that the speedup in blackboard cooperative learn- 
ing is due to the multiplicative aspect of the process. Their analysis is performed in two 
ways as briefly summarized below. The shape of the lognormal distribution shows that the 
characteristic acceleration of cooperative learning over individual learning. The long tail 
of the lognormal distribution represents an increase in the number of "superior perform- 
ers" having fast search speeds. 



2.4.1 Speed Distribution of Agents 

Before examining multiplicative processes, let us start by examining the probability distri- 
bution of the time required for an agent to solve a problem individually using random 
search. Let us assume that an agent can look at a possible solution more than once (i.e., 
search with replacement). The probability distribution of an agent finding a solution at 
time t is 

r-l 

P(*)   =   \[Pfailure^) P success^)- & 
k = 0 

As Clearwater, et al. point out, if the probability of failure remains constant, then the re- 
sulting time distribution is a simple geometric. If the size of the search space is S, and the 
number of solutions is s, then the distribution becomes 

fit) = (1.0-J)'    (|). (6) 

If we change the replacement assumption so that the agent cannot reexamine a possible 
solution, then the fraction of failure s/S in Eq. (6) decreases as the search progresses due 
to a decrease in 5. However, this decrease is initially small if the agent eliminates only one 
state in the search space at each step. Since there are still a large number of remaining po- 
tential solutions for the agent to examine, the distribution is still approximately geometric. 

If we again change our assumptions so that each of the agents examines a changing black- 
board for partial solutions, then Pfailure (?) in Eq. (5) becomes a random variable. The 
amount of reduction in the search space varies at each step as the product of the reduction 
at the previous time steps. Because Eq. (5) has the same form as Eq. (1), we can conclude 
that the time to solve the problem is lognormally distributed. If the time to solve the prob- 
lem is lognormally distributed, then the speed of finding a solution (i.e., speed being the 
reciprocal of the time) is also lognormally distributed. 

2.5 Examining the Distribution of Hint Values 

Clearwater et al. (Clearwater, Huberman, and Hogg, 1991) also perform an analysis show- 
ing the multiplicative effect of hints in reducing the size of the search space. A lognormal 
distribution of hint values over a time interval results in a lognormal distribution in the 
speed of the agents finding a solution. The reduction in the size of the search space is ex- 
pressed in terms of a recursive relationship as shown in Eq. (7). The equation includes the 
rate of individual working effort and the rate of cooperative sharing. The multiplicative ef- 
fect of an additional/'1 hint on the remaining size of the search space for the t agent is 

d,U)  = rf.-O'-D 
W; 

q      > 
ft,, (7) 

where di (J) is the resulting number of solutions that the agent has left to consider, hj is 
the effectiveness of a hint, w, is the rate at which the agent works on exploring possible 
solutions (i.e., states in the search space), and q is the rate of examining posted hints of 



other agents. When hj has a value less than one (and greater than zero), the/'' hint reduces 
the number of possible solutions that an agent must consider. The closer the hint value is 
to zero, the more beneficial is the hint. Hints given during the beginning of the search are 
usually more effective than those received later on. Based on Eq. (7), the reduction in the 
effective search space from the initial time zero after the (j - if hint is 

i w- >    j 

tu) = 4(0) IH-^Xn^ <8) 
k=\ q l=\k=l 

If there is very little individual search (i.e., w-« q), then the hint values in Eq. (8) are near- 
ly multiplicative. As a result, the distribution of hint values for a fixed amount of time (or 
number of hints) is lognormally distributed. This distribution can be easily transformed 
into a lognormal distribution of solution times. Since the distribution of hints effectively 
gives a distribution of the search space remaining, this distribution is proportional to the 
distribution of time remaining for the agents to find the solution. Thus, Clearwater et al. 
again demonstrate that the asymptotic probability distribution of the times for discovering 
a solution (as well as the speed) is lognormally distributed among the agents. 

2.6 SCHEMA ANALYSIS AND MULTIPLICATIVE PROCESSES 

The Schema Theorem also expresses a recursive relationship: the number m of schema H 
in the population from one generation to the next. If pH(s, t- 1) is the probability that 
schema H survives after the disruptive effects of crossover and mutation, and if 
fH(t-l) /f(t-l) is the proportion of schema H generated, then according to the Sche- 
ma Theorem, the number of schema H in the next generation, mH(t), is bounded as 
shown in Eq. (9) (Holland, 1975): 

ffH{t-\)\ 
mH{t) >mH{t-\) [pH{s,t-\)]\ j. (9) 

After t—\ generations, the number of schema H is 

mH(t)=mH(0)Yl[-Z—\[pH(s,k)]. (10) 

GAs, when modified to perform function optimization, use fairly involved heuristics that 
go beyond the assumptions behind the Schema Theorem (e.g., single-point crossover, pro- 
portional selection).3 These extended heuristics include the scaling of observed fitnesses, 
elitist strategies, ranked-based selection, various forms of crossover, adaptively changing 
crossover and mutation probabilities, etc. When performing function optimization, Eq. 

3. De Jong points out the inappropriateness of using the Schema Theorem to analyze non- 
canonical GAs performing function optimization (De Jong, 1992). 



(10) should probably be expressed in terms of some process-dependent heuristic, t,H (k), 
which acts more like a random variable. Given 

ffH(
k)\ $»(*)  =  lj^-)lp»{s>k)]' (11) 

then 

mH(t)=mH(0)H($H(k)). (12) 
k = 0 

If the heuristic \H (t) increases the effectiveness of the evaluation of schema H over time, 
then the GA is multiplicative in terms of increasing or decreasing a particular schema H. 
If schema H is considered to be the optimal solution to the problem, and if the heuristic 
^H (t) is effective, then the GA's distribution of solution speeds over the population mem- 
bers might be described using some variation of the lognormal distribution. 

Notice that Eq. (12) has a form similar to Eqn. (1) above. Schema H in this context refers 
to a partial solution. In effect, when £,H (t) is between 0 and 1, it is analogous to the value 
of a hint in Eq. (8). As '£>H (t) gets closer to zero, the effectiveness of the "hint" in reduc- 
ing schema H improves. Alternatively, a product greater than one is analogous to increas- 
ing a desirable schema H in the population. The individual agent's work effort is 
implemented through the mutation operator. If the individual work effort is small, then the 
effect on £,H(t) is small. 

The GA implements hint sharing through reproduction and crossover. The combined ef- 
fect of reproduction and crossover can be thought of as regulating the rate of access to a 
hint on the blackboard. However, unlike the blackboard learner, this access rate is insepa- 
rable from the value of the hints in Eqn. (12). The GA must use its population not only to 
investigate solutions, but it must also use this finite memory capacity to reflect the quality 
of hints within the population. The GA increases its memory allocation to better perform- 
ing schema in order to increase the rate of access to better hint values. This dual use of 
memory means that a desirable schema H may initially go through several short cycles of 
growth and decay. 



3   AN EMPIRICAL LOOK AT THE PROBLEM 

The next phase of this study is to explore GA behavior empirically using a few test cases 
to see if the GA's speed distribution for finding a solution compares favorably to the log- 
normal distribution. In order to obtain a general estimate of the speed of finding solutions, 
the GA runs until all of the agents have found the optimal solution at least once. During 
the run, the time that an agent first discovers the optimum is recorded, even though the 
agent's answer may change subsequently due to crossover and mutation. Since the infor- 
mation is still within the population, for the most part, an agent is credited with success the 
first time it encounters the solution. 

All of the experiments reported here use modifications of GENESIS-4.5 (Grefenstette, 
1983). The modified GA treats solutions and agents separately during reproduction and 
crossover. The shuffling of population members to assure random mating means that 
agents, and not their solutions, are rearranged. In this way, it is possible to track when an 
agent first finds an optimal solution. 

This study examines three optimization problems: functions F3 and F5 from De Jong's 
test suite (De Jong, 1975), and the test function F7, studied by Schaffer et al. (Schaffer, 
Caruana, Eshelman, and Das, 1989). Clearwater et al. solve examples of cryptarithmetic 
problems using a blackboard cooperative learning system to test their theory empirically 
and to provide a quantitative evaluation of the value of cooperation in problem solving. 
The cryptarithmetic problem is an example of optimization under constraints. For purpos- 
es of comparison, this study also applies a GA to solve one of the more difficult of the 
cryptarithmetic problems reported by Clearwater et al. 

This study represents the beginning a larger endeavor. The work starts by examining a few 
functions using informal graphical methods to determine the reasonableness of applying 
the lognormal model. When appropriate, the empirical data are fitted to the three parame- 
ter lognormal by using an inverse transformation technique in which distribution parame- 
ters are estimated from percentiles of the actual data. The data are transformed to the 
Gaussian distribution using Eq. (4), and then a Kolmogorov-Smirnoff goodness-of-fit test 
is performed between the data and a three parameter lognormal distribution having the 
same parameter values. 

4. Normally, in GENESIS-4.5, each generation is treated separately, since new structures 
represent the children of parent structures and not new solutions. 
5. Goodness-of-fit techniques differ from usual statistical techniques (D'Agostino and 
Stephens, 1986). Usually, statistical experiments are designed to disprove a null hypothe- 
sis so that an alternative hypothesis can be accepted. In goodness-of-fit testing, the oppo- 
site approach is used: an effort is made to confirm the null hypothesis. The alternative 
hypothesis is often a composite hypothesis, giving little or no information about the distri- 
bution. As a result, proving the goodness of a fit is not usually definitive. Based on some 
understanding of the underlying process, a set of null hypothesis are tested; in turn, each 
of these null hypotheses are examined using several goodness-of-fit techniques. 



4   EXAMINING SOME GA OPTIMIZATION PROBLEMS 

In this study we are interested in emphasizing convergence or improvement in off-line 
performance, because we would like all of the agents to find the optimal solution. Very of- 
ten, in order to achieve convergence, the GA needs a large population and a small muta- 
tion rate. So all of the optimization runs use a population size of 100 or 200 and mutation 
rate of 0.001. If we were more interested in on-line performance, a smaller population and 
a higher mutation rate would be desirable (Schaffer, Caruana, Eshelman, and Das, 1989). 
For F7, the most difficult problem of the three optimization problems, an elitist strategy is 
used instead of a higher mutation rate. All of the optimization runs use a scaling window 
of five generations. 

Figure 1 (a) shows a graphic plot of the speed points for a run of F3. If a transformation of 
the log of the data to the Gaussian distribution is correct, the data points should lie along a 
straight line. Figure 1 (b) shows the corresponding fit to the empirical speed distribution 
among the agents. This fit passes the Kolmogorov-Smirnoff test at the 95% level of confi- 
dence.6 Smoothing bin counts with neighboring bins provides an even better fit (not 
shown). Figure 1(c) show the growth rate of all schemata mapping into the optimal solu- 
tion. During the beginning of the search, the optimal schemata exhibit short bursts of 
growth and then appear to decay (a growth ratio less than one) in a subsequent generation. 
The pattern of growth burst followed by decay, proceeds in a cyclic fashion until the 
growth rate begins to level out. Optimal schemata temporarily disappear (intact) while the 
GA tests other non-optimal schemata. When the optimal schemata reappear, the large 
burst of growth compensates for the temporary hiatus of the schemata. 

Figures 2(a) and 2(b) shows the results of a comparable run using function F5. The non- 
linearity in Figure 2(a) indicates a shorter tail than what would be expected for the lognor- 
mal. The fit shown in Figure 2(b) passes the Kolmogorov-Smirnoff test at the 95% confi- 
dence level. 

Figure 3 shows similar plots for function F7. By incorporating the elitist strategy, a large 
percentage of the agents in the population discover the optimal solution fairly quickly. The 
empirical distribution in this case is actually negatively skewed. The elitist strategy domi- 
nates the other learning heuristics. The result is an unidentifiable mixed distribution. 

6. The Kolmogorov-Smirnoff test examines the general shape of the distribution and not 
expected bin counts. The bin counts in these experiments are too small to perform Chi- 
Square tests. 



De Jong's F3: AGENTS' SPEED DATA 
THREE PARAMETER LOG-NORMAL FIT 

Z=y + r\xlog( speed - e), 7 = 11.9161, t) = 2.0845, and e = 0.01438 
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Figure 1: Test Results for De Jong's F3 Function 



De Jona's F5: AGENTS' SPEED DATA 
THREE PARAMETER LOG-NORMAL FIT 

Z= V + ri x log (speed - e), y = 6.3407, i\ = 1.2449, and e = 0.002 
Population = 200, PM = 0.001, Pc = 0.6, Scaling Window = 5 
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F7 OF SCHAFFER ET AL.: AGENTS' SPEED DATA 
THREE PARAMETER LOG-NORMAL FIT 

Z= Y + nx log(speed - e), y = 23.2952, r\ = 3.5618, and e = 0.0 
Population = 100; PM = 0.001, Pc = 0.6, Scaling Window = 5, Elitist Stratec 
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Figure 3: Test Results for Function F7 



4.1 THE CRYPARITHMETIC PROBLEM 

In cryptarithmetic, an addition problem is expressed using letters. The objective of prob- 
lem is to assign a unique numeral to each letter used so that the addition works correctly. 
For example, one problem explored by Clearwater et al. is DONALD + GERALD = ROB- 
ERT. In this problem, there is one solution and 3,628,800 legal combinations of decimal 
digits in the initial search space. The solution is A = 4, B = 3, D = 5, E = 9, G = 1, L = 8, N 
= 6, O = 2, R = 7, and T = 0. 

A GA population structure consists of the assigned value for each of the ten letters; i.e., an 
allele is a decimal digit. For example, given the fixed letter sequence {ABDEGLOR 
T}, the correct assignment of the digits is {4 3 5 9 1 8 6 2 7 0}. In order to ensure that only 
legal representations are maintained in the population, the GA employs Syswerda's swap 
mutation, and a slight modification of his position-based crossover (Syswerda, 1991), 
which is called here, for convenience, assignment crossover. Assignment crossover en- 
sures that the absolute allele assignments of the parents are maintained in the children as 
much as possible (not just relative positions). The assignment crossover proceeds in three 
steps: (1) exchange allele information at selected positions; (2) copy the alleles of a parent 
into the empty positions of the corresponding child (e.g., from parent 1 to child 1), unless 
the child just inherited the value from the other parent, and (3) place the crossed over val- 
ues of a parent (e.g., alleles from parent 1 to child 2) into the remaining empty slots of its 
own child, if possible. Four positions are randomly selected for application of the operator. 

Parent 1: 0 1 3 7 9 2 5 6 8 4 
Parent 2: 7 3 5 9 8 4 0 2 6 1 
Selected Positions: * * * * 

Child 1: 7 1 5 3 9 6 0 2 8 4 
Child 2: 0 7 3 9 8 4 5 6 2 1 

As a result of the assignment crossover above, parents and their corresponding children 
have the values 1, 9, 8, and 4 in the same positions. This crossover operator minimizes the 
disruption in the assignment of the digits. 

The evaluation function in the GA computes the sum of DONALD + GERALD = ROB- 
ERT based on the current assignment of the letter values. For each column added correct- 
ly, the agent receives partial credit depending on the number of letters participating in the 
sum. For example, if in adding the right-most column, i.e., D + D = T, the agent were to 
get the correct answer, then the partial evaluation would be 2; if the agent were also to add 
the left most column correctly (after taking care of any carry, of course), then the agent 
would receive an additional 3 points. The totally correct answer is worth 14 points. Unlike 
most traditional GA problems, this problem explicitly uses partial evaluations to compute 
the overall fitness of an agent's trial solution. Nevertheless, population members only re- 
ceive evaluations of entire solutions. 

The mutation rate used for this problem is higher than the rate used in the preceding opti- 
mization problems (pm = 0.1 instead of pm = 0.001) because each letter can take on ten 
values instead of two. Without the use of a high mutation rate, the GA prematurely con- 
verges to a suboptimal solution. A small crossover rate (around 0.2) is used in conjunction 
with the high mutation rate. The GA also tends to prematurely converge when the cross- 
over rate exceeds 0.21. 



CRYPTARITHMETIC PROBLEM: DONALD + GERALD = ROBERT 
Population = 100, PM = 0.1, Pc = 0.18, Scaling Window = 5 
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Figure 4: Test Results for the Cryptarithmetic Problem 

Figure 4 shows the result of one of the runs. In Figure 4(a), the piecewise linear appear- 
ance of the plot suggests that for pieces having a non-zero slope, the distribution is a mix- 
ture of lognormal distributions. Slightly curved shapes represent transitions between the 
distributions. The disruptive effect of mutation prevents a more continuous growth in the 
solutions. 

Figure 5 shows the result of having a varying number of crossover points, ranging from 
one to nine. There are essentially two separate intervals where the agents discover the so- 
lution. The additional disruptive effect of the crossover prevents the continued growth of 



CRYPTARITHMETIC PROBLEM: DONALD + GERALD = ROBERT 
Population = 100; PM = 0.1, Pc = 0.1, Scaling Window = 5 
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Figure 5: Additional Test Results for the Cryptarithmetic Problem 

the solution starting around generation 310 so that the remaining agents do not discover 
the solution until around generation 450. 



5    CONCLUSIONS 

Viewing the GA as a cooperative learner provides additional insight into the function of 
the algorithm. This paper begins to explore the GA as a cooperative process. Due to infor- 
mation sharing among members of the population, the GA can be described metaphorical- 
ly using a cooperative learning framework. 

The actual distribution of solution speeds for the GA depends on many factors. The shape 
of the distribution is sensitive to parameter settings which affect the balance between co- 
operation and exploration in the GA. In addition, the propagation of solutions through the 
population using the mechanisms of reproduction and crossover affect the shape of the 
speed distribution. The GA increases its memory allocation to better performing schemata 
in order to increase the rate of access to those schemata; however, the same memory space 
is used to test potential solutions in the search space. Because the GA uses its memory for 
both purposes, a relatively fit schema may go through short cycles of growth and decay to- 
ward the beginning of the search. In effect, a schema needs to time-share the population 
memory with other schema. Nevertheless, the overall speed distribution among the agents 
for finding a solution may be approximately lognormal in some cases. 

Future research will address the cooperative aspect of the GA by examining: (1) more test 
problems; (2) different goodness-of-fit tests; (3) other heuristics used by the GA (e.g., rank 
based selection), and (4) modifications of the GA. For example, it would be interesting to 
test what effect, if any, increasing the storage capacity of each agent in the population has 
on the speed distribution of agents. It might also be interesting to study the effect of hav- 
ing crossover among more than two parents as a way of increasing the communication in 
the population. 
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